Funding or Finance Opportunity

European-Commission-logo-9-1024×710

Explainable and Robust AI (AI Data and Robotics Partnership)

Expected Outcome:

Projects are expected to contribute to one of the following outcomes:

  • Enhanced robustness, performance and reliability of AI systems, including awareness of the limits of operational robustness of the system
  • Improved explainability and accountability, transparency and autonomy of AI systems, including awareness of the working conditions of the system

Scope:

Trustworthy AI solutions, need to be robust, safe and reliable when operating in real-world conditions, and need to be able to provide adequate, meaningful and complete explanations when relevant, or insights into causality, account for concerns about fairness, be robust when dealing with such issues in real world conditions, while aligned with rights and obligations around the use of AI systems in Europe. Advances across these areas can help create human-centric AI[1], which reflects the needs and values of European citizens and contribute to an effective governance of AI technologies.

To achieve robust and reliable AI, novel approaches are needed to develop methods and solutions that work under other than model-ideal circumstances, while also having an awareness when these conditions break down. To achieve trustworthiness, AI system should be sufficiently transparent and capable of explaining how the system has reached a conclusion in a way that it is meaningful to the user, while also indicating when the limits of operation have been reached.

The purpose is to advance AI-algorithms that can perform safely under a common variety of circumstances, reliably in real-world conditions and predict when these operational circumstances are no longer valid. The research should aim at advancing robustness and explainability for a generality of solutions, while leading to an acceptable loss in accuracy and efficiency, and with known verifiability and reproducibility. The focus is on extending the general applicability of explainability and robustness of AI-systems by foundational AI and machine learning research. To this end, the following methods may be considered but are not necessarily restricted to:

  • data-efficient learning, transformers, reinforcement learning, federated and edge-learning, automated machine learning, or any combination thereof for improved robustness and explainability.
  • hybrid approaches integrating learning, knowledge and reasoning, model-based approaches, neuromorphic computing, or other nature-inspired approaches and other forms of hybrid combinations which are generically applicable to robustness and explainability.
  • continual learning, active learning, long-term learning and how they can help improve robustness and explainability.
  • multi-modal learning, natural language processing, speech recognition and text understanding taking multicultural aspects into account for the purpose of increased operational robustness and the capability to explain alternative formulation[2].

Multidisciplinary research activities should address all of the following:

  • Proposals should involve appropriate expertise in all the relevant disciplines, and where appropriate Social Sciences and Humanities (SSH), including gender and intersectional knowledge to address concerns around gender, racial or other biases. etc.
  • Proposals are expected to dedicate tasks and resources to collaborate with and provide input to the open innovation challenge under HORIZON-CL4-2023-HUMAN-01-04 addressing explainability and robustness. Research teams involved in the proposals are expected to participate in the respective Innovation Challenges.
  • Contribute to making AI and robotics solutions meet the requirements of Trustworthy AI, based on the respect of the ethical principles, the fundamental rights including critical aspects such as robustness, safety, reliability, in line with the European Approach to AI. Ethics principles needs to be adopted from early stages of development and design.

All proposals are expected to embed mechanisms to assess and demonstrate progress (with qualitative and quantitative KPIs, benchmarking and progress monitoring), and share communicable results with the European R&D community, through the AI-on-demand platform or Digital Industrial Platform for Robotics, public community resources, to maximise re-use of results, either by developers, or for uptake, and optimise efficiency of funding; enhancing the European AI, Data and Robotics ecosystem through the sharing of results and best practice.

In order to achieve the expected outcomes, international cooperation is encouraged, in particular with Canada and India.

Specific Topic Conditions:

Activities are expected to start at TRL 2-3 and achieve TRL 4-5 by the end of the project – see General Annex B.

[1]A European approach to artificial intelligence | Shaping Europe’s digital future (europa.eu)

[2]Research should complement build upon and collaborate with projects funded under topic HORIZON-CL4-2023-HUMAN-01-03: Natural Language Understanding and Interaction in Advanced Language Technologies

General Information

Call Type
EU Horizon Europe
Call Identifier (if any)
HORIZON-CL4-2024-HUMAN-01-06
Expected Outcome or Impact
Projects are expected to contribute to one of the following outcomes:

1. Enhanced robustness, performance and reliability of AI systems, including awareness of the limits of operational robustness of the system
2. Improved explainability and accountability, transparency and autonomy of AI systems, including awareness of the working conditions of the system
Target Groups
Research Institutes, Academia, Small- and Medium Enterprises, Industry, Non-government organisations, Start-Ups
Submission Deadlines
Single fixed deadline
(Next) Submission Deadline
19 March 2024
Type of Funding Instrument
Collaborative Projects / Consortia
Max. funding amount per project [EURO]
10,000,000 €
Overall budget for all projects [EURO]
30,000,000 €

Author Info

John Fahlteich

Member since 2 years ago
View Profile

Ask a question or request support

Explainable and Robust AI (AI Data and Robotics Partnership) 0 reviews

Login to Write Your Review

There are no reviews yet.

Write Your Review

Your email address will not be published. Required fields are marked *